УДК 619:579.843

Тяпша Ю.И., кандидат ветеринарных наук, доцент **Дубаневич О.В.,** старший научный сотрудник

РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского», г. Минск, Республика Беларусь

ИСПОЛЬЗОВАНИЕ МЕТОДОВ ERIC И RAPD ПЦР В ГЕНОТИПИРОВАНИИ БАКТЕРИЙ *PSEUDOMONAS AERUGINOSA*

Резюме

B статье приведены данные по использованию методов ERIC и RAPD ПЦР в генотипировании эпизоотических штаммов Pseudomonas aeruginosa.

Ключевые слова: Pseudomonas aeruginosa, штаммы, ERIC, RAPD, полимеразная цепная реакция.

Summary

The article provides data on the use of ERIC and RAPD PCR methods in the genotyping of epizootic strains of Pseudomonas aeruginosa.

Keywords: Pseudomonas aeruginosa, strains, ERIC, RAPD, polymerase chain reaction.

Поступила в редакцию 10.03.2024 г.

ВВЕДЕНИЕ

Семейство Pseudomonadaceae представляет 5 родов: Pseudomonas, Burcholderia, Comamonas, Brevundimonas, Stenotrophomonas. Pod Pseudomonas включает 7 основных видов: Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas stutzeri, Pseudomonas mendocina, Pseudomonas alcaligenes, Pseudomonas pseudoalcaligenes. Изучаемый нами вид Pseudomonas aeruginosa по структуре О-антигена включает более чем 20 серогрупп, при этом высокая антигенная вариабельность Pseudomonas aeruginosa обусловливает постоянное увеличение их количества [1].

Псевдомоноз норок вызывает *Pseudomonas aeruginosa* (синегнойная палочка) – грамотрицательная аэробная палочковидная бактерия. Синегнойная палочка широко распространена во внешней среде, а также на коже, слизистых оболочках, в кале человека и животных, хорошо сохраняется во влажной среде (воде, моче, кале) и поддается воздействию обычных дезинфектантов (0,25%-ный раствор формалина, 0,5%-ный раствор фенола и гидроксида натрия). Возбудитель псевдомоноза обладает высокой устойчивостью ко многим антибиотикам [2, 3, 4].

В естественных условиях к псевдомонозу восприимчивы щенки норок, осо-

бенно самцы. Основной источник возбудителя – больные норки, которые при кашле, фырканье, с мочой и калом выделяют возбудитель во внешнюю среду. Передача его от больных животных к здоровым происходит аэрогенным путем, с пухом (во время линьки), через инвентарь, корм, подстилку и воду. Первым источником заражения норок служат мясные корма, полученные от больных псевдомонозом животных. Заболевание чаще регистрируют осенью. Заболеваемость при острых вспышках может достигать 45–50 % и сопровождаться высокой (до 70 %) летальностью [3, 4, 5, 6].

Предполагаем, что различные нуклеотидные профили геномов этих групп, полученные при ERIC и RAPD ПЦР, соответствуют различным генотипам *Pseudomonas aeruginosa* и, соответственно, различие в антигенном отношении проявляется фенотипически.

Цель работы – изучение генетических профилей эпизоотических штаммов *Pseudomonas aeruginosa* с использованием методов ERIC и RAPD ПЦР.

МАТЕРИАЛЫ И МЕТОДЫ

Работа выполнялась в рамках гранта БРФФИ Б22-055 от 4 мая 2022 г. При исследовании использовали суточные культуры эпизоотических штаммов Pseudomo-

nas aeruginosa РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского», выделенные из биологического материала от крупного рогатого скота и свиней из различных сельскохозяйственных предприятий республики. В работе использовали 12 чистых культур P. aeruginosa (референтные штаммы и полевые изоляты, выделенные в РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского»). Бактериальную ДНК выделяли по методике, описанной Stone G.G. (1994) [7]. Миллиардную взвесь каждого штамма ресуспендировали в 0,5 мл дистиллированной воды в пробирках типа эппендорф, инкубировали в твердотельном термостате «Віоsan» (Латвия) в течение 10 мин при температуре 98 °C, охлаждали и центрифугировали в течение 5 мин при 13000 об/мин. Надосадочную жидкость применяли для амплификации и использовали следующие реактивы: буфер 10х РСР для Тад ДНКполимеразы (ГНУ «Институт биоорганической химии НАН Беларуси»), 10x ТВЕбуфер рН 8,0, маркер молекулярного веса «GeneRuler 50 bpLadder» (Fermentas, Литва), Таq-полимераза (5 ед./мкл), раствор MgC12 (50 мМ), смесь дезоксинуклеозид-

трифосфатов (25 мМ, Fermentas), агароза (Helicon, Россия). ПЦР-продукт визуализировали с помощью электрофореза в 1,5%ном агарозном геле. RAPD ПЦР осуществляли в реакционной смеси с праймерами Rapd1 - AGCGGGCCAA [8], Rapd2 ACGGCCGACC [9]. Праймеры синтезировали в ОДО «Праймтех» (Минск). Режим амплификации для RAPD ПЦР включал начальный цикл денатурации – 1 мин при температуре 95 °C; 35 циклов по схеме: денатурация 95 °C -30 с, отжиг 45 °C -50 с, синтез 60 °C – 120 с, завершающий цикл – 5 мин при 60 °C. ERIC ПЦР осуществляли в реакционной смеси с праймерами ERIC1 – ATGTAAGCTCCTGGGGATTCAC, ERIC2 – AAGTAAGTACTGGGGTGAGCG [10]. Peжим амплификации для ERIC ПЦР проводили в 3 вариантах (таблица), постановку реакции – на термоциклере Thermal Cycler С1000 (BioRad, США). Электрофоретическое разделение продуктов реакции проводили в 2%-ном агарозном геле при напряженности электрического поля 12 В/см при комнатной температуре. Визуализацию полос и документирование данных осуществляли с помощью системы гель-документации Gel-Doc XR (BioRad, США).

Таблица – Режим амплификации для ERIC ПЦР

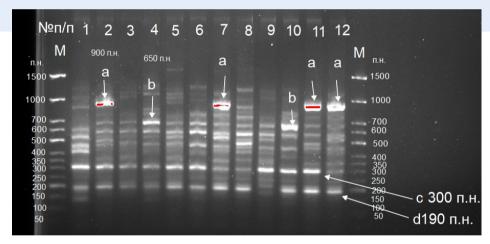

Этапы	Режим 1	Режим 2	Режим 3
Начальный цикл денатурации	95 °C – 7 мин	95 °C – 7 мин	95 °C – 5 мин
30 циклов (денатурация, отжиг, элонгация)	94 °C – 1 мин	94 °C – 1 мин	94 °C – 1 мин
	51 °C – 1 мин	42 °C − 1,5 мин	45 °C – 1 мин
	60 °C – 8 мин	60 °C − 1 мин	60 °C – 2 мин
Завершающий цикл элонгации	60 °C – 16 мин	60 °C – 10 мин	60 °C – 5 мин

Для изучения внутривидового различия между штаммами *Pseudomonas aeruginosa* использовали молекулярно-генетические методы — ERIC (Enterobacterial repetitive intergenic consensus — энтеробактериальная повторяющаяся интрагенная последовательность) и RAPD ПЦР (Random Amplified Polymorphic DNA).

РЕЗУЛЬТАТЫ ИССЛЕЛОВАНИЙ

При постановке RAPD ПЦР использовали наиболее оптимальные концентрации реакционных смесей: количество Таq-

полимеразы в реакционной смеси — 1,25 ед./мкл, концентрация праймера — 0,5 мкмоль, магния — 3 ммоль, dNTPs — 0,2 ммоль, матрицы — 2 мкл (в 25 мкл). Установили, что температура отжига существенно не влияет на результаты исследования (рисунок 1), при этом количество матрицы имеет значение. Поэтому важно в постановке RAPD ПЦР использовать исходную культуру с одинаковой концентрацией ДНК и, по возможности, сравнительный анализ проводить одновременно со всеми исследуемыми штаммами.



М – маркер молекулярных масс 50–1500 п.н.; 33–43 – температура отжига

Рисунок 1 – Электрофореграммы продуктов амплификации штамма 2a *P. aeruginosa* при разной температуре отжига

В результате RAPD ПЦР установили идентичность 12 штаммов *Pseudomonas aeruginosa* по продуктам RAPD ПЦР на уровне 190 и 300 п.н. и четкое различие у группы штаммов *Pseudomonas aeruginosa* N_2 2a, 7a, 11a, 12a и группы штаммов 4b и

10b. Штаммы № 1, 3, 5, 6, 8, 9 представляют собой группу, частично схожую по нуклеотидному профилю, и требуют более детального изучения другими методами, в частности методом ERIC ПЦР (рисунок 2).


М – маркер молекулярных масс 50–1500 п.н.; № 1–12 – исследуемые штаммы P. aeruginosa, a, b – схожие геномные профили

Рисунок 2 – RAPD ПЦР. Электрофореграмма продуктов амплификации штаммов *P. aeruginosa*

В результате RAPD ПЦР получилось добиться отличающихся картин ПЦР для последовательностей внутри вида, при этом некоторые штаммы были между собой идентичны, другие имели индивидуальные генотипы.

ERIC ПЦР осуществляли в реакционной смеси с праймерами ERIC1 – ATGTAAGCTCCTGGGGATTCAC, ERIC2 –

ААСТААСТАСТССССТСАССС. Праймеры синтезировали в ОДО «Праймтех» (Минск). Постановку реакции проводили на термоциклере Thermal Cycler C1000 (ВіоRad, США). Режим амплификации для ЕRIС ПЦР проводили в трех вариантах (рисунок 3). Наиболее четкое разделение продуктов реакции проходило при режиме 3.

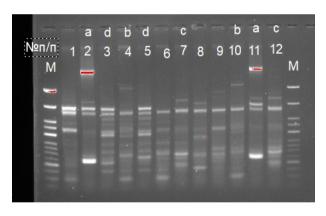

М – маркер молекулярных масс; 1–4 – исследуемые штаммы

Рисунок 3 – Электрофореграмма продуктов амплификации штаммов *P. aeruginosa* при разных режимах амплификации и концентрации праймеров

При постановке ERIC ПЦР с 12 культурами P. aeruginosa использовали наиболее оптимальные концентрации реакционных смесей: количество Таq-полимеразы в реакционной смеси -1,25 ед./мкл, концентрация праймера -0,5 мкмоль, магния -3 ммоль, dNTPs -0,2 ммоль, матрицы -2 мкл (в 25 мкл). Установили, что температура отжига существенно не влияет на результаты исследования (рисунок 3),

при этом количество матрицы имеет значение. Поэтому в постановке ERIC ПЦР важно использовать исходную культуру с одинаковой концентрацией ДНК и, по возможности, сравнительный анализ проводить одновременно со всеми исследуемыми штаммами.

В результате ERIC ПЦР установили четкое различие у некоторых штаммов *Pseudomonas aeruginosa* (рисунок 4).

М – маркер молекулярных масс 50–1500 п.н.; № 1–12 – исследуемые штаммы *P. aeruginosa*. а, b, c, d – схожие геномные профили. Концентрация праймеров – 0,5 мкмоль

Рисунок 4 – ERIC ПЦР. Электрофореграмма продуктов амплификации штаммов *P. aeruginosa*

Получилось добиться отличающихся картин ПЦР для последовательностей внутри вида, при этом некоторые штаммы были между собой идентичны, другие имели индивидуальные генотипы.

изолятов имели индивидуальные генотипы.

ЗАКЛЮЧЕНИЕ

ЕRIC ПЦР позволяет выявлять индивидуальные особенности штаммов. Большая часть эпизоотических штаммов *Pseudomonas aeruginosa*, выделенных на территории Республики Беларусь, относятся к 4 геномогруппам: 2a и 11a, 3d и 5d, 4b и 10b, 7c и 12c. Четыре изолята имели индивидуальные генотипы.

Метод RAPD ПЦР подтвердил свою диагностическую значимость при генотипировании бактерий *Pseudomonas aeruginosa* внутри вида. Наибольшее количество эпизоотических штаммов *Pseudomonas aeruginosa*, выделенных на территории Республики Беларусь, относятся к 2 геномогруппам: 2a, 7a, 11a, 12a и 4b, 10b. Шесть

Вакцина против псевдомоноза норок не обеспечивает стерильный иммунитет к гетерологичным штаммам *Pseudo*monas aeruginosa, и для создания высокоэффективной вакцины необходимо выявить генетические группы псевдомон, нуклеотидные профили геномов которых соответствуют различным генотипам *Pseudomonas aeruginosa* и, соответственно, различаются в антигенном отношении, что проявляется фенотипически, белковый состав антигенов имеет различие.

Методы ĖRIС и RAPD ПЦР подтвердили свою диагностическую значимость при генотипировании бактерий Pseudomonas aeruginosa внутри вида. С помощью RAPD и ERIC ПЦР можно выявлять доминирующие группы и генотипы Pseudomonas aeruginosa, встречающиеся на территории Республики Беларусь, и наиболее этиологически значимые штаммы использовать при разработке вакцин против псевдомоноза сельскохозяйственных животных и планировании профилактических мероприятий. Все выявленные или доминирующие группы целесообразно включать в состав вакцины против псевдомоноза норок.

Принципиально новые данные, полученные в ходе выполнения работы, позволят использовать их для разработки эффективной схемы профилактики *Pseudomonas aeruginosa* в звероводческих хозяйствах Республики Беларусь.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- 1. Эпидемиология и профилактика синегнойной инфекции: федеральные клинические рекомендации, ноябрь 2014 / O. Н. Егорова [и др.]. М., 2014. 82 с.
- 2. Алтон, Л. В. Выживаемость и адаптация некоторых штаммов рода Pseudomonas в морской и речной воде / Л. В. Алтон // Микробиология. -1983. T. 45. N = 6. C. 16 = 20.
- 3 . Баженова, Е. А. Чувствительность Pseudomonas aeruginosa, выделенных от сельскохозяйственных животных, пушных зверей и птиц, к антибиотикам / Е. А. Баженова // Ветеринария Кубани. -2012. -№ 6. -C. 8-10.
- 4. Беляков, В. Д. Псевдомонады и псевдомонозы / В. Д. Беляков, Л. А. Ряпис, В. И. Илюхин. М.: Медиина. 1990. 224 с.
- 5. Больных, В. Т. Псевдомонозы животных и их профилактика / В. Т. Больных, Е. А. Кирьянов, Н. В. Больных. Владивосток : Дальневосточное кн. изд-во, 1987. С. 37–43.
- 6. Гвоздяк, Р. И. Об особенностях патогенности Pseudomonas aeruginosa / Р. И. Гвоздяк, Л. М. Яковлева // Журнал микробиологии. 1987. № 3. С. 3—6.
- 7. Detection of Salmonella serovars from clinical samples by enrichment broth cultivation-PCR procedure / G. G. Stone [et al.] // J. Clin. Microbiol. 1994. 32: 1742–1749.
- 8. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier / O. Zaborina [et al.] // Ann Clin Microbiol Antimicrob. 2006. 5, 14. https://doi.org/10.1186/1476-0711-5-14.
- 9. Barrow, K. Alterations in Two-Component Regulatory Systems of phoPQ and pmrAB Are Associated with Polymyxin B Resistance in Clinical Isolates of Pseudomonas aeruginosa / K. Barrow, D. H. Kwon // Antimicrobial Agents and Chemotherapy. 2009. 53(12), 5150–5154. doi:10.1128/aac.00893-09.
- 10. Prevalence, antimicrobial resistance, and genotyping of Shiga toxin-producing Escherichia coli in foods of cattle origin, diarrheic cattle, and diarrheic humans in Egypt / W. Elmonir [et al.] // Gut Pathogens. 2021. 13(1). doi:10.1186/s13099-021-00402-y.

