Preview

Epizootology Immunobiology Pharmacology Sanitation

Advanced search

Development of fluorescence im- munochromatographic assay kit for african swine fever virus fast testing

Abstract

   The continuing spread of African swine fever (ASF) outside Africa in the whole world, has heightened awareness of the threat posed by this devastating disease to the global pig industry and food security. Fast and accurate African swine fever virus (ASFV) detection method is very important for ASF prevention. A double antibody sandwich FICA method was optimized and established, and FICA strips (FICAS) were assembled and then evaluated. The sensitivity of the FICAS kit was 0,044 ng/mL. The recoveries ranged from 102,07 % to 108,60 %, and all CVs were below 7 %. The common pigs infectious disease samples, positive samples and healthy control samples did not lead to false negative and false positives. The kit can be stably stored at 37 °C for 7 days without significant decrease in fluorescence value. The prepared FICAS kit is rapid, feasible and effective for testing ASFV within 15 min. This study provides a new method for rapidly screening ASFV infection in pigs industry.

About the Authors

Laiqing Li
Guangzhou Youdi Bio-technology Co., Ltd.; Jinan Laide Bio-technology Co., Ltd.; Guangzhou Zhenda Biopharmaceutical Technology Co., Ltd.
China

Laiqing Li, chairman of the board

Guangzhou; Jinan



Cuicui Chen
Guangzhou Youdi Bio-technology Co., Ltd.; Jinan Laide Bio-technology Co., Ltd.
China

Cuicui Chen, project manager

Guangzhou; Jinan



Huankun Liang
Guangzhou Youdi Bio-technology Co., Ltd.
China

Huankun Liang, quality manager

Guangzhou



Tiancai Liu
Southern Medical University
China

Tiancai Liu

School of Laboratory Medicine and Biotechnology

Guangzhou



Wenqi Dong
Guangzhou Zhenda Biopharmaceutical Technology Co., Ltd.
China

Wenqi Dong

Guangzhou



References

1. Galindo I, Alonso C. African Swine Fever Virus: A Review. Viruses. 2017;9(5):103. doi: 10.3390/v9050103.

2. Revilla Y, Pérez-Núñez D, Richt JA. African Swine Fever Virus Biology and Vaccine Approaches. Adv Virus Res. 2018;100:41-74. doi: 10.1016/bs.aivir.2017.10.002.

3. Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel). 2022 Aug 17;12(8):1255. doi: 10.3390/life12081255. 4.

4. Wang L, Fu D, Tesfagaber W, Li F, Chen W, Zhu Y, Sun E, Wang W, He X, Guo Y, Bu Z, Zhao D. Development of an ELISA Method to Differentiate Animals Infected with Wild-Type African Swine Fever Viruses and Attenuated HLJ/18-7GD Vaccine Candidate. Viruses. 2022;14(8):1731. doi: 10.3390/v14081731.

5. Li C, Zou Z, Lv C, Zhao Y, Han P, Sun X, Jin M. Flow cytometry-based multiplexing antibody detection for diagnosis of African swine fever virus. Anal Chim Acta. 2022;1225:340244. doi: 10.1016/j.aca.2022.340244.

6. Xu ZH, Liu J, Li B, Wang JK, Zeng X, Chen ZJ, Hongsibsong S, Huang W, Lei HT, Sun YM, Xu ZL. The Simultaneous Determination of Chlorpyrifos-Ethyl and -Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay. Biosensors (Basel). 2022 ;12(11):1006. doi: 10.3390/bios12111006.

7. Xu ZH, Wang JK, Ye QX, Jiang LF, Deng H, Liang JF, Chen RX, Huang W, Lei HT, Xu ZL, Luo L. Highly selective monoclonal antibody-based fluorescence immunochromatographic assay for the detection of fenpropathrin in vegetable and fruit samples. Anal Chim Acta. 2023 Mar 15;1246:340898. doi: 10.1016/j.aca.2023.340898.

8. Choi ES, Al Faruque H, Kim JH, Cho JH, Park KM, Kim E. Immunochromatographic assay to detect α-tubulin in urine for the diagnosis of kidney injury. J Clin Lab Anal. 2020;34(1):e23015. doi: 10.1002/jcla.23015.

9. Chen CC, Zhong, SH, Lai HR, et al. Preparation and preliminary application of time-resolved immunofluorescence assay for African swine fever virus antibody. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(3):284-289.

10. Giménez-Lirola LG, Mur L, Rivera B, Mogler M, Sun Y, Lizano S, Goodell C, Harris DL, Rowland RR, Gallardo C, Sánchez-Vizcaíno JM, Zimmerman J. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA. PLoS One. 2016 Sep 9;11(9):e0161230. doi: 10.1371/journal.pone.0161230.

11. Li C, He X, Yang Y, Gong W, Huang K, Zhang Y, Yang Y, Sun X, Ren W, Zhang Q, Wu X, Zou Z, Jin M. Rapid and visual detection of African swine fever virus antibody by using fluorescent immunochromatography test strip. Talanta. 2020;219:121284. doi: 10.1016/j.talanta.2020.121284.

12. Nah JJ, Kwon OK, Choi JD, Jang SH, Lee HJ, Ahn DG, Lee K, Kang B, Hae-Eun K, Shin YK. Development of an indirect ELISA against African swine fever virus using two recombinant antigens, partial p22 and p30. J Virol Methods. 2022v;309:114611. doi: 10.1016/j.jviromet.2022.114611.

13. Rodríguez JM, García-Escudero R, Salas ML, Andrés G. African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites. J Virol. 2004;78(8):4299-1313. doi: 10.1128/jvi.78.8.4299-4313.2004.

14. Gallardo C, Reis AL, Kalema-Zikusoka G, Malta J, Soler A, Blanco E, Parkhouse RM, Leitão A. Recombinant antigen targets for serodiagnosis of African swine fever. Clin Vaccine Immunol. 2009 Jul;16(7):1012-20. doi: 10.1128/CVI.00408-08.

15. Cao Y, Han D, Zhang Y, Zhang K, Du N, Tong W, Li G, Zheng H, Liu C, Gao F, Tong G. Identification of one novel epitope targeting p54 protein of African swine fever virus using monoclonal antibody and development of a capable ELISA. Res Vet Sci. 2021;141:19-25. doi: 10.1016/j.rvsc.2021.10.008.

16. Lai XH, Liang RL, Liu TC, Dong ZN, Wu YS, Li LH. A Fluorescence Immunochromatographic Assay Using Europium (III) Chelate Microparticles for Rapid, Quantitative and Sensitive Detection of Creatine Kinase MB. J Fluoresc. 2016;26(3):987-96. doi: 10.1007/s10895-016-1786-3.

17. Zou M, Yin Y, Guo L, Zhang Q, Li J, Zhang H, Song Q, Li Z, Wang L, Ao X, Liang X. A Europium Nanosphere-Based Time-Resolved Fluorescent Immunochromatographic Assay for the Rapid Screening of 4,4'-Dinitrocarbanilide: Aiming at Improving Strip Method Performance. Biosensors (Basel). 2023 May 4;13(5):518. doi: 10.3390/bios13050518.

18. Zhou F, Dou C. Rapid detection of dexamethasone in milk by time-resolved fluorescence immunochromatography. Journal of Food Safety and Quality, 2022;22:7331-7338.

19. Xu S, Ma B, Li J, Su W, Xu T, Zhang M. Europium Nanoparticles-Based Fluorescence Immunochromatographic Detection of Three Abused Drugs in Hair. Toxics. 2023 Apr 29;11(5):417. doi: 10.3390/toxics11050417.

20. Babaya N, Liu E, Miao D, Li M, Yu L, Eisenbarth GS. Murine high specificity/sensitivity competitive europium insulin autoantibody assay. Diabetes Technol Ther. 2009 Apr;11(4):227-33. doi: 10.1089/dia.2008.0072.

21. Haleyur Giri Setty MK, Liu J, Mahtani P, Zhang P, Du B, Ragupathy V, Devadas K, Hewlett IK. Novel Time-Resolved Fluorescence Europium Nanoparticle Immunoassay for Detection of Human Immunodeficiency Virus-1 Group O Viruses Using Microplate and Microchip Platforms. AIDS Res Hum Retroviruses. 2016 Jun; 32(6):612-9. doi: 10.1089/aid.2014.0351.

22. Chen C, Lai H, Liang H, He Y, Guo G, Li L. A New Method for Detection African Swine Fever Virus: Time-resolved Fluorescence Immunoassay. J Fluoresc. 2021;31(5):1291-1296. doi: 10.1007/s10895-021-02754-9.


Review

For citations:


Li L., Chen C., Liang H., Liu T., Dong W. Development of fluorescence im- munochromatographic assay kit for african swine fever virus fast testing. Epizootology Immunobiology Pharmacology Sanitation. 2024;(1):39-44.

Views: 48


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2224-168X (Print)