Разработка набора флуоресцентного иммунохроматографического анализа для быстрого тестирования вируса африканской чумы свиней
Аннотация
Продолжающееся распространение африканской чумы свиней (АЧС) за пределами Африки во всем мире повысило осведомленность об угрозе, которую представляет это разрушительное заболевание для мировой свиноводческой отрасли и продовольственной безопасности. Быстрый и точный метод обнаружения вируса африканской чумы свиней очень важен для профилактики болезни. Метод FICA с двойным сэндвичем антител был оптимизирован и внедрен, а полоски FICA (FICAS) были собраны и затем оценены. Чувствительность набора FICAS составила 0,044 нг/мл. Возвраты варьировались от 102,07 % до 108,60 %, а все CV были ниже 7 %. Обычные образцы инфекционных заболеваний свиней, положительные образцы и здоровые контрольные образцы не привели к ложноотрицательным и ложноположительным результатам. Набор можно стабильно хранить при температуре 37 °С в течение 7 дней без существенного снижения значения флуоресценции. Подготовленный набор FICAS является быстрым, осуществимым и эффективным способом для тестирования вируса АЧС в течение 15 минут. Это исследование предлагает новый метод быстрого скрининга инфекции вируса АЧС в свиноводстве.
Об авторах
Лайцин ЛиКитай
Лайцин Ли, председатель правления
Гуанчжоу; Цзинань
Цуйцуй Чен
Китай
Цуйцуй Чен, менеджер проекта
Гуанчжоу; Цзинань
Хуанкунь Лян
Китай
Хуанкунь Лян, менеджер по качеству
Гуанчжоу
Тяньцай Лю
Китай
Тяньцай Лю
Факультет лабораторной медицины и биотехнологии
Гуанчжоу
Вэньци Дун
Китай
Вэньци Дун
Гуанчжоу
Список литературы
1. Galindo I, Alonso C. African Swine Fever Virus: A Review. Viruses. 2017;9(5):103. doi: 10.3390/v9050103.
2. Revilla Y, Pérez-Núñez D, Richt JA. African Swine Fever Virus Biology and Vaccine Approaches. Adv Virus Res. 2018;100:41-74. doi: 10.1016/bs.aivir.2017.10.002.
3. Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel). 2022 Aug 17;12(8):1255. doi: 10.3390/life12081255. 4.
4. Wang L, Fu D, Tesfagaber W, Li F, Chen W, Zhu Y, Sun E, Wang W, He X, Guo Y, Bu Z, Zhao D. Development of an ELISA Method to Differentiate Animals Infected with Wild-Type African Swine Fever Viruses and Attenuated HLJ/18-7GD Vaccine Candidate. Viruses. 2022;14(8):1731. doi: 10.3390/v14081731.
5. Li C, Zou Z, Lv C, Zhao Y, Han P, Sun X, Jin M. Flow cytometry-based multiplexing antibody detection for diagnosis of African swine fever virus. Anal Chim Acta. 2022;1225:340244. doi: 10.1016/j.aca.2022.340244.
6. Xu ZH, Liu J, Li B, Wang JK, Zeng X, Chen ZJ, Hongsibsong S, Huang W, Lei HT, Sun YM, Xu ZL. The Simultaneous Determination of Chlorpyrifos-Ethyl and -Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay. Biosensors (Basel). 2022 ;12(11):1006. doi: 10.3390/bios12111006.
7. Xu ZH, Wang JK, Ye QX, Jiang LF, Deng H, Liang JF, Chen RX, Huang W, Lei HT, Xu ZL, Luo L. Highly selective monoclonal antibody-based fluorescence immunochromatographic assay for the detection of fenpropathrin in vegetable and fruit samples. Anal Chim Acta. 2023 Mar 15;1246:340898. doi: 10.1016/j.aca.2023.340898.
8. Choi ES, Al Faruque H, Kim JH, Cho JH, Park KM, Kim E. Immunochromatographic assay to detect α-tubulin in urine for the diagnosis of kidney injury. J Clin Lab Anal. 2020;34(1):e23015. doi: 10.1002/jcla.23015.
9. Chen CC, Zhong, SH, Lai HR, et al. Preparation and preliminary application of time-resolved immunofluorescence assay for African swine fever virus antibody. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(3):284-289.
10. Giménez-Lirola LG, Mur L, Rivera B, Mogler M, Sun Y, Lizano S, Goodell C, Harris DL, Rowland RR, Gallardo C, Sánchez-Vizcaíno JM, Zimmerman J. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA. PLoS One. 2016 Sep 9;11(9):e0161230. doi: 10.1371/journal.pone.0161230.
11. Li C, He X, Yang Y, Gong W, Huang K, Zhang Y, Yang Y, Sun X, Ren W, Zhang Q, Wu X, Zou Z, Jin M. Rapid and visual detection of African swine fever virus antibody by using fluorescent immunochromatography test strip. Talanta. 2020;219:121284. doi: 10.1016/j.talanta.2020.121284.
12. Nah JJ, Kwon OK, Choi JD, Jang SH, Lee HJ, Ahn DG, Lee K, Kang B, Hae-Eun K, Shin YK. Development of an indirect ELISA against African swine fever virus using two recombinant antigens, partial p22 and p30. J Virol Methods. 2022v;309:114611. doi: 10.1016/j.jviromet.2022.114611.
13. Rodríguez JM, García-Escudero R, Salas ML, Andrés G. African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites. J Virol. 2004;78(8):4299-1313. doi: 10.1128/jvi.78.8.4299-4313.2004.
14. Gallardo C, Reis AL, Kalema-Zikusoka G, Malta J, Soler A, Blanco E, Parkhouse RM, Leitão A. Recombinant antigen targets for serodiagnosis of African swine fever. Clin Vaccine Immunol. 2009 Jul;16(7):1012-20. doi: 10.1128/CVI.00408-08.
15. Cao Y, Han D, Zhang Y, Zhang K, Du N, Tong W, Li G, Zheng H, Liu C, Gao F, Tong G. Identification of one novel epitope targeting p54 protein of African swine fever virus using monoclonal antibody and development of a capable ELISA. Res Vet Sci. 2021;141:19-25. doi: 10.1016/j.rvsc.2021.10.008.
16. Lai XH, Liang RL, Liu TC, Dong ZN, Wu YS, Li LH. A Fluorescence Immunochromatographic Assay Using Europium (III) Chelate Microparticles for Rapid, Quantitative and Sensitive Detection of Creatine Kinase MB. J Fluoresc. 2016;26(3):987-96. doi: 10.1007/s10895-016-1786-3.
17. Zou M, Yin Y, Guo L, Zhang Q, Li J, Zhang H, Song Q, Li Z, Wang L, Ao X, Liang X. A Europium Nanosphere-Based Time-Resolved Fluorescent Immunochromatographic Assay for the Rapid Screening of 4,4'-Dinitrocarbanilide: Aiming at Improving Strip Method Performance. Biosensors (Basel). 2023 May 4;13(5):518. doi: 10.3390/bios13050518.
18. Zhou F, Dou C. Rapid detection of dexamethasone in milk by time-resolved fluorescence immunochromatography. Journal of Food Safety and Quality, 2022;22:7331-7338.
19. Xu S, Ma B, Li J, Su W, Xu T, Zhang M. Europium Nanoparticles-Based Fluorescence Immunochromatographic Detection of Three Abused Drugs in Hair. Toxics. 2023 Apr 29;11(5):417. doi: 10.3390/toxics11050417.
20. Babaya N, Liu E, Miao D, Li M, Yu L, Eisenbarth GS. Murine high specificity/sensitivity competitive europium insulin autoantibody assay. Diabetes Technol Ther. 2009 Apr;11(4):227-33. doi: 10.1089/dia.2008.0072.
21. Haleyur Giri Setty MK, Liu J, Mahtani P, Zhang P, Du B, Ragupathy V, Devadas K, Hewlett IK. Novel Time-Resolved Fluorescence Europium Nanoparticle Immunoassay for Detection of Human Immunodeficiency Virus-1 Group O Viruses Using Microplate and Microchip Platforms. AIDS Res Hum Retroviruses. 2016 Jun; 32(6):612-9. doi: 10.1089/aid.2014.0351.
22. Chen C, Lai H, Liang H, He Y, Guo G, Li L. A New Method for Detection African Swine Fever Virus: Time-resolved Fluorescence Immunoassay. J Fluoresc. 2021;31(5):1291-1296. doi: 10.1007/s10895-021-02754-9.
Рецензия
Для цитирования:
Ли Л., Чен Ц., Лян Х., Лю Т., Дун В. Разработка набора флуоресцентного иммунохроматографического анализа для быстрого тестирования вируса африканской чумы свиней. Эпизоотология Иммунобиология Фармакология Санитария. 2024;(1):39-44.
For citation:
Li L., Chen C., Liang H., Liu T., Dong W. Development of fluorescence im- munochromatographic assay kit for african swine fever virus fast testing. Epizootology Immunobiology Pharmacology Sanitation. 2024;(1):39-44.